Hormonal regulation of the epithelial Na+ channel: from amphibians to mammals.
نویسندگان
چکیده
High-resistance epithelia derived from amphibian sources such as frog skin, toad urinary bladder, and the A6 Xenopus laevis kidney cell line have been widely used to elucidate the underlying mechanisms involved in the regulation of vectorial ion transport. More recently, the isolation of high-resistance mammalian cell lines has provided model systems in which to study differences and similarities between the regulation of ion transporter function in amphibian and mammalian renal epithelia. In the present study, we have compared the natriferic (Na+ retaining) responses to aldosterone, insulin, and vasotocin/vasopressin in the A6 and mpkCCDcl4 (mouse principal cells of the kidney cortical collecting duct) cell lines. The functional responses of the epithelial Na+ channel (ENaC) to hormonal stimulation were remarkably similar in both the amphibian and mammalian lines. In addition, insulin- and aldosterone-stimulated, reabsorptive Na+ transport in both cell lines requires the presence of functional PI3-kinase.
منابع مشابه
The cellular pool of Na+ channels in the amphibian cell line A6 is not altered by mineralocorticoids. Analysis using a new photoactive amiloride analog in combination with anti-amiloride antibodies.
An amiloride-sensitive Na+ channel is found in the apical plasma membrane of high resistance, Na+ transporting epithelia. We have developed a method for the identification of this channel based on the use of a new high affinity photoreactive amiloride analog, 2'-methoxy-5'-nitrobenzamil (NMBA), and anti-amiloride antibodies to identify photolabeled polypeptides. NMBA specifically labels the put...
متن کاملThe kidney-specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel-mediated Na+ transport.
WNK1 belongs to a unique family of Ser/Thr kinases that have been implicated in the control of blood pressure. Intronic deletions in the WNK1 gene result in its overexpression and lead to pseudohypoaldosteronism type II, a disease with salt-sensitive hypertension and hyperkalemia. How overexpression of WNK1 leads to Na(+) retention and hypertension is not entirely clear. Similarly, there is no ...
متن کاملEpithelial sodium channel regulated by differential composition of a signaling complex.
Hormonal control of transepithelial sodium (Na(+)) transport utilizes phosphatidylinositide 3'-kinase (PI3K) and Raf-MAPK/ERK kinase (MEK)-ERK-dependent signaling pathways, which impact numerous cell functions. How signals transmitted by these pathways are sorted and appropriately transmitted to alter Na(+) transport without altering other physiologic processes is not well understood. Here, we ...
متن کاملThe Control of Calcium Metabolism in Zebrafish (Danio rerio)
Zebrafish is an emerging model for the research of body fluid ionic homeostasis. In this review, we focus on current progress on the regulation of Ca2+ uptake in the context of Ca2+ sensing and hormonal regulation in zebrafish. Na⁺-K⁺-ATPase-rich cells (NaRCs), the specialized ionocytes in the embryonic skin and adult gills, play a dominant role in Ca2+ uptake in zebrafish. Transepithelial Ca2+...
متن کاملSerum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- General and comparative endocrinology
دوره 147 1 شماره
صفحات -
تاریخ انتشار 2006